在争相开发无人车的过程中,企业的衡量标准都是他们的累计行驶里程。Waymo今年5月表示,他们的汽车已经在公共道路上试驾了300万英里,而特斯拉去年表示,他们已经借助Autopilot系统,通过现有的车主收集了1000多万英里的驾驶数据。
然而,里程越多,就意味着这些公司的后台数据处理人员需要手工从事更多工作。短短几英里的驾驶里程就会产生数十GB的数据,这些数据很快就会变得过于庞大,以至于无法通过车载无线网络进行传输。相反,必须首先保存在硬盘之中,然后再传输到到外包中心。
这样一个拥有尖端技术的行业,却采用如此陈旧的模式,的确令人感到意外。
硅谷自动驾驶系统开发公司PlusAI首席执行官DavidLiu表示,每驾驶一个小时,就需要花费数百个小时才能将其转化成有用的数据。
他说,“我们需要几十万,甚至几百万小时的数据”才能让无人车随处行驶,并且需要“数十万人来实现这一目标”。
但大型科技公司通常不肯披露无人车所涉及的人工程序。Waymo、Uber和特斯拉均拒绝对此置评。
“很难听到有人谈论此事。”华盛顿大学计算机科学与工程教授DanWeld说,“他们都喜欢说,机器学习很神奇。”
曾经担任Waymo和Uber工程师的AnthonyLevandowski曾于2013年在加州大学伯克利分校的公开演讲中,将谷歌的印度团队称作一个由“人类机器人”组成的团队,他们负责标记街景服务采集的各种图像。
这种劳动密集型工作的成本并不低。业内人士估计,要创建和维护每座美国城市的地图,一年的花费约为数十亿美元。
有的创业公司从中看到了机会,PlusAI、Deepmap和Drive.ai都声称可以使用“深度学习”来降低人工成本(关于Drive.ai完全用深度学习来做无人车的方案,戳这里),但仍然可以维持安全驾驶所需的精度。但其他业内人士仍然怀疑,深度学习难以彻底摆脱对人类的依赖。
MightyAI的Bencke指出,Facebook、YouTube和Twitter面临的挑战,是如何在他们的社交平台上应对欺凌和恐怖主义等各种负面内容。“如果深度学习具备这种能力,你不认为它现在就应该已经解决这个问题了吗?”他说,“这个问题没有无人车那么复杂,而且市场很大。”